
IS&T’s 1999 PICS Conference
Multivariate Gaussian Modelling of
Object Colors for Image Analysis

Mehmet Celenk and Maarten Uijt de Haag
School of Electrical Engineering and Computer Science

Stocker Center, Ohio University, Athens, Ohio 45701 USA
Abstract

This paper describes an automatic object detection
method for color scenes by modeling the object and the
background colors with additive Gaussian noise. Image
color histogram is treated as an estimate of the 3-D prob-
ability density function p(x) of image color vector x=[R
G B]t , where t denotes the matrix transposition. For an
image of a background and an object with the 3-D color
distributions p1(x) and p2(x), p(x) is the sum or mixture
of these two unimodal densities given by
p(x)=P1p1(x)+P2p2(x), where P1 and P2 are the a priori
probabilities of the two colors. Here, p1(x) and p2(x) are
modeled with additive 3-D Gaussian noise with two un-
known parameters (i.e., mean vectors, µ1 and µ2, and
covariance matrices, ∑1 and ∑2). The symmetry of 3x3
covariance matrices allows complete specification of the
3-D multivariate density p(x) by 19 unknown parameters.
The unknown parameters (µ 's and ∑'s) are estimated by
minimizing the mean square error ems(x) between the 3-D
model p(x) and the experimental 3-D histogram h(x) ob-
tained from the image data. A threshold vector T=[TR TG

TB]T is defined so that all pixels with a color level below
|T| are considered background points and all pixels with a
level above |T| are considered object points. T is com-
puted by minimizing the overall probability e(T) of erro-
neously classifying image pixels along the R, G, and B
color axes. The possibility of two solutions for TR, TG,
and TB indicates that two threshold values in each color
dimension may be required to obtain the optimal bound-
ary detection result. The proposed algorithm is tested
using color images of various natural scenes, aerial pho-
tographs, indoor and outdoor pictures, and images down-
loaded from the internet. Most of these images contain
complex shaped objects and texture surfaces. Computer
experiments show that even for noisy pictures, the algo-
rithm accurately separates the object from the back-
ground without human intervention.

Introduction and Background Information

Thresholding and clustering are two of the most com-
monly used approaches to image segmentation. Although
the former method works best for gray-level images, its
extention to color pictures has proven difficult. The major
difficulty in this extension is the multi-dimensionality of
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the color data. Many techniques have been developed for
image thresholding, each with its own merits and limita-
tions.1,2,3 Because of its mathematical tractability, Gaus-
sian modeling of color distribution of images is highly
desirable. In this regard, we describe an automatic object
detection scheme applicable for a wide variety of imag-
ing applications.

Description of the Algorithm

In the proposed method, we consider an image color his-
togram as an estimate of the 3-D color probability density
function p(x), where x=[R G B]t  is the 3x1 image color
vector and t denotes the matrix transposition. It is as-
sumed that a given image contains a background and an
object region with the 3-D color distributions p1(x) and
p2(x). Based on this assumption we define p(x) as the
sum or mixture of these two unimodal densities. From the
basic probability theory p(x) can be expressed in a form

p(x)=P1 p1 (x)+P2 p2 (x) (1)

where P1 and P2 are the a priori probabilities of the two
colors. Here, p1(x) and p2(x) are modeled with additive 3-
D Gaussian noise with two unknown parameters (i.e.,
mean vectors, µ1 and µ2, and covariance matrices, ∑1

and ∑2). The underlying multivariate unimodal normal
densities are given by

p1 (x)=(2π)-3/2|∑1 |-1/2exp[(x-µ1 )T∑1
-1(x-µ1 )] (2)

p2 (x)=(2π)-3/2|∑2 |-1/2exp[(x-µ2 )T∑2
-1(x-µ2 )] (3)

This model is of particular interest because of its
mathematical tractability. The symmetry of 3x3 covari-
ance matrices allows complete specification of the 3-D
multivariate density p(x) by 19 unknown parameters (i.e.,
9 for the µ1 and ∑1 of the background, 9 for the µ2 and ∑2

of the object, and 1 for the a priori probabilities since

P1 + P2  = 1 (4)

By minimizing the mean square error ems (x) between
the 3-D model p(x) and the experimental 3-D histogram
h(x) (obtained from the image data) we estimate the
unknown parameters (µ's and ∑'s).

If all the parameters are known, a quadratic optimal
decision surface can be formed in the color space so that
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the object area can be separated from the background
region. The underlying parameters (mean vector and co-
variance matrix) may be estimated in the maximum like-
lihood (ML) sense. However, this requires a priori
knowledge about the scene in question, which may not
be available prior to the operation of an automatic object
detection system.

Instead, we propose a method that relies on slicing
this 3-D model distribution along the respective color
coordinate axes resulting in three one-dimensional (1-D)
mixture normal distributions, each corresponding to a
particular color component (i.e., red, green, and blue), as
given by

p(R) = P1 p1 (R) + P2 p2 (R) (5a)

p(G) = P1 p1 (G) + P2p2 (G) (5b)

p(B) = P1 p1 (B) + P2 p2 (B) (5c)

where p1(R), p1(G), p1(B) are the 1-D Gaussian distribu-
tions of the background and p2(R), p2(G), p2(B) are those
of the object, respectively. The underlying color density
functions for the background (p1) and the object (p2) are
given by

p1 (R)=(2π)-1/2(σR1)
-1exp{-(R-µR1)

2/2σR1
2 } (6a)

p1 (G)=(2π)-1/2(σG1)
-1exp{-(G-µG1)

2/2σG1
2 } (6b)

p1 (B)=(2π)-1/2(σB1)
-1exp{-(B-µB1)

2/2σB1
2 } (6c)

p2 (R)=(2π)-1/2(σR2)
-1exp{-(R-µR2)

2/2σR2
2 } (7a)

p2 (G)=(2π)-1/2(σG2)
-1exp{-(G-µG2)

2/2σG2
2 } (7b)

p2 (B)=(2π)-1/2(σB2)
-1exp{-(B-µB2)

2/2σB2
2 } (7c)

where (µR1, σR1
2), (µG1, σG1

2), (µB1, σB1
2) and (µR2, σR2

2),
(µG2, σG2

2), (µB2, σB2
2)  are the unknown means and vari-

ances of the R, G, and B model distributions, respec-
tively. Notice that this system has a total of 13
unknowns; i.e., means (µR1,µG1,µB1 and µR2,µG2,µB2) and
variances (σR1

2, σG1
2, σB1

2 and σR2
2, σG2

2, σB2
2) of the

background and the object and the a priori probabilities,
which is 6 parameters less than that of the 3-D mixture
distribution model.

By minimizing the mean square (MS) error
(ems(R),ems(G),ems(R)) between the mixture 1-D densi-
ties, p(R), p(G), p(B), and the 1-D histograms, h(R),
h(G), h(B), obtained from the image data we estimate
the unknown parameters (µ's and σ2's) for the 1-D mixture
model, which leads to three optimal thresholds
(TR,TG ,TB), one per color component, for automatic im-
age thresholding. The MS equations are given by

ems(R) = ∑n
j=1 [p(Rj )-h(Rj )]

2 /n (8a)

ems(R) = ∑n
j=1 [p(Gj )-h(Gj )]

2 /n (8b)
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ems(B) = ∑n
j=1 [p(Bj )-h(Bj )]

2 /n (8c)

where an n-point histogram is assumed. In general, ana-
lytically determining the above mentioned parameters
that minimize the MS error is not a simple matter. Even
for the Gaussian case, the straight-forward computation of
equating the partial derivatives to 0 leads to a set of si-
multaneous transcendental equations that usually can be
solved only by numerical procedures. Since the gradient
is easily computed, a conjugate gradient or Newton's
method for simultaneous nonlinear equations may be
used to minimize ems 's. With either of these iterative
methods, starting values must be specified. Assuming the
a priori probabilities to be equal, P1=P2, are sufficient.
Starting values for the means and variances are deter-
mined by detecting  modes in the red, green, and blue
histograms or simply by dividing these color histograms
into two parts about their mean values, and computing
means and variances of the two parts to be used as start-
ing values.

Here we assume, without loosing generality, that the
dark colored regions correspond to the background and
the bright colored regions correspond to objects. In this
case µR1<µR2, µG1<µG2, µB1<µB2 and a set of thresholds
(TR,TG ,TB) are defined so that all pixels with a color
level below (TR,TG ,TB) are considered background points
and all pixels with a level above (TR,TG ,TB) are consid-
ered object points. To determine the desired threshold
values, we define the probability of (erroneously) classi-
fying an object point as a background point by the inte-
gral equations

ER1(TR) =- ∞∫TR p2 (R)dR (9a)

EG1(TG) =- ∞∫TG p2 (G)dG (9b)

EB1(TB) =- ∞∫TB p2 (B)dB (9c)

Similarly, the probability of classifying a background
point as an object point may be written as

ER2(TR) =- ∞∫TR p1 (R)dR (10a)

EG2(TG) =- ∞∫TG p1 (G)dG (10b)

EB2(TB) =- ∞∫TB p1 (B)dB (10c)

Therefore the overall probability of error is defined by

E(TR) = P2ER1(TR) + P1ER2(TR) (11a)

E(TG) = P2EG1(TG) + P1EG2(TG) (11b)

E(TB) = P2EB1(TB) + P1EB2(TB) (11c)

To find the threshold values for which this overall er-
ror is minimal requires

dE(TR)/dTR = 0 (12a)
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dE(TG)/dTG = 0 (12b)

dE(TB)/dTB = 0 (12c)

This yields

P1p1 (R) = P2 p2 (R) (13a)

P1p1 (G) = P2p2 (G) (13b)

P1p1 (B) = P2 p2 (B) (13c)

Applying these results to the Gaussian densities, tak-
ing logarithms, and simplifying, gives the quadratic equa-
tions

ARTR
2 + BRTR + CR = 0 (14a)

AGTG
2 + BGTG + CG = 0 (14b)

ABTB
2 + BBTB + CB = 0 (14c)

where

AR=σR1
2  - σR2

2

BR =2(µR1σR2
2 - µR2σR1

2)

CR =µR2
2σR1

2 -µR1
2σR2

2  + 2σR1
2σR2

2 ln(σR2P1 /σR1P2 )

AG=σG1
2  - σG2

2

BG=2(µG1σG2
2 - µG2σG1

2)

CG=µG2
2σG1

2-µG1
2σG2

2  + 2σG1
2σG2

2 ln(σG2P1 /σG1P2 )

AB=σB1
2  - σB2

2

BB =2(µB1σB2
2 - µB2σB1

2)

CB =µB2
2σB1

2 -µB1
2σB2

2  + 2σB1
2σB2

2 ln(σB2P1 /σB1P2 )

The possibility of two solutions for TR, TG , and TB in-
dicates that two threshold values in each color compo-
nent may be required to obtain the optimal boundary
detection result. Three special cases produce the follow-
ing single set of closed form solutions:

Case 1:
If the variances are equal, σR

2=σR1
2=σR2

2, σG
2=σG1

2=σG2
2,

σB
2=σB1

2=σB2
2, a single set of thresholds is sufficient:

TR=(µR1+µR2)/2 + [σR
2/(µR1- µR2)]ln(P2/P1 ) (15a)

TG=(µG1+µG2)/2 + [σG
2/(µG1- µG2)]ln(P2/P1 ) (15b)

TB=(µB1+µB2)/2 + [σB
2/(µB1- µB2)]ln(P2/P1 ) (15c)
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Case 2:
If the prior probabilities are equal, P1=P2, the optimal

thresholds are the average of the means:

TR = (µR1 + µR2)/2 (16a)

TG = (µG1 + µG2)/2 (16b)

TB = (µB1 + µB2)/2 (16c)

Case 3:
If the color variances are all zero, σR

2=σG
2=σB

2=0,
the same results as in the case 2 are obtained.

Assuming single thresholds, the object in question is
detected by assigning a value of 1 to the image points
(i,j) whose color values are above the threshold values;
i.e., R(i,j)    >    TR, G(i,j)    >    TG, and B(i,j)    >    TB. Similarly, the
background area is extracted by labeling the image pix-
els (i,j) with 0, whose color values are below the thresh-
olds; i.e., R(i,j)<TR, G(i,j)<TG , and B(i,j)<TB. This is
summarized by the following classification rules:

(i,j) ∈ω 1

if R(i,j)    >    TR,G(i,j)    >    TG, B(i,j)    >    TB (17a)

(i,j) ∈ω 2

if R(i,j)<TR , G(i,j)<TG , B(i,j)<TB (17b)

Here ω1 and ω2 represent the object and background
pixel sets in the image plane, respectively.

Experimental Results and Conclusions

The proposed algorithm is tested using color images of
various natural scenes, aerial photographs, indoor and
outdoor pictures, and images downloaded from the inter-
net. Most of these images contain complex shaped ob-
jects and texture surfaces. Computer experiments show
that even for noisy pictures, the algorithm accurately
separates the object from the background without human
intervention. This verifies the basic premise that the 1-D
Gaussian approximation to object and background color
densities for the selected set of images is adequate. Fur-
thermore, we also conclude as an empirical evidence
that the minimum mean square approach can be used
effectively to estimate the parameters (means and vari-
ances) of a color image from its respective color histo-
grams.
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